Saturday, March 7, 2009

In the context of genomics, annotation is the process of marking the genes and other biological features in a DNA sequence.

Genome annotation

In the context of genomics, annotation is the process of marking the genes and other biological features in a DNA sequence. The first genome annotation software system was designed in 1995 by Dr. Owen White, who was part of the team that sequenced and analyzed the first genome of a free-living organism to be decoded, the bacterium Haemophilus influenzae. Dr. White built a software system to find the genes (places in the DNA sequence that encode a protein), the transfer RNA, and other features, and to make initial assignments of function to those genes. Most current genome annotation systems work similarly, but the programs available for analysis of genomic DNA are constantly changing and improving.


Computational evolutionary biology
Evolutionary biology is the study of the origin and descent of species, as well as their change over time. Informatics has assisted evolutionary biologists in several key ways; it has enabled researchers to:

trace the evolution of a large number of organisms by measuring changes in their DNA, rather than through physical taxonomy or physiological observations alone,
more recently, compare entire genomes, which permits the study of more complex evolutionary events, such as gene duplication, horizontal gene transfer, and the prediction of factors important in bacterial speciation,
build complex computational models of populations to predict the outcome of the system over time
track and share information on an increasingly large number of species and organisms
Future work endeavours to reconstruct the now more complex tree of life.

The area of research within computer science that uses genetic algorithms is sometimes confused with computational evolutionary biology, but the two areas are unrelated.


Measuring biodiversity
Biodiversity of an ecosystem might be defined as the total genomic complement of a particular environment, from all of the species present, whether it is a biofilm in an abandoned mine, a drop of sea water, a scoop of soil, or the entire biosphere of the planet Earth. Databases are used to collect the species names, descriptions, distributions, genetic information, status and size of populations, habitat needs, and how each organism interacts with other species. Specialized software programs are used to find, visualize, and analyze the information, and most importantly, communicate it to other people. Computer simulations model such things as population dynamics, or calculate the cumulative genetic health of a breeding pool (in agriculture) or endangered population (in conservation). One very exciting potential of this field is that entire DNA sequences, or genomes of endangered species can be preserved, allowing the results of Nature's genetic experiment to be remembered in silico, and possibly reused in the future, even if that species is eventually lost.


Analysis of gene expression
The expression of many genes can be determined by measuring mRNA levels with multiple techniques including microarrays, expressed cDNA sequence tag (EST) sequencing, serial analysis of gene expression (SAGE) tag sequencing, massively parallel signature sequencing (MPSS), or various applications of multiplexed in-situ hybridization. All of these techniques are extremely noise-prone and/or subject to bias in the biological measurement, and a major research area in computational biology involves developing statistical tools to separate signal from noise in high-throughput gene expression studies. Such studies are often used to determine the genes implicated in a disorder: one might compare microarray data from cancerous epithelial cells to data from non-cancerous cells to determine the transcripts that are up-regulated and down-regulated in a particular population of cancer cells.


Analysis of regulation
Regulation is the complex orchestration of events starting with an extracellular signal such as a hormone and leading to an increase or decrease in the activity of one or more proteins. Bioinformatics techniques have been applied to explore various steps in this process. For example, promoter analysis involves the identification and study of sequence motifs in the DNA surrounding the coding region of a gene. These motifs influence the extent to which that region is transcribed into mRNA. Expression data can be used to infer gene regulation: one might compare microarray data from a wide variety of states of an organism to form hypotheses about the genes involved in each state. In a single-cell organism, one might compare stages of the cell cycle, along with various stress conditions (heat shock, starvation, etc.). One can then apply clustering algorithms to that expression data to determine which genes are co-expressed. For example, the upstream regions (promoters) of co-expressed genes can be searched for over-represented regulatory elements.


Analysis of protein expression
Protein microarrays and high throughput (HT) mass spectrometry (MS) can provide a snapshot of the proteins present in a biological sample. Bioinformatics is very much involved in making sense of protein microarray and HT MS data; the former approach faces similar problems as with microarrays targeted at mRNA, the latter involves the problem of matching large amounts of mass data against predicted masses from protein sequence databases, and the complicated statistical analysis of samples where multiple, but incomplete peptides from each protein are detected.


Analysis of mutations in cancer
In cancer, the genomes of affected cells are rearranged in complex or even unpredictable ways. Massive sequencing efforts are used to identify previously unknown point mutations in a variety of genes in cancer. Bioinformaticians continue to produce specialized automated systems to manage the sheer volume of sequence data produced, and they create new algorithms and software to compare the sequencing results to the growing collection of human genome sequences and germline polymorphisms. New physical detection technology are employed, such as oligonucleotide microarrays to identify chromosomal gains and losses (called comparative genomic hybridization), and single nucleotide polymorphism arrays to detect known point mutations. These detection methods simultaneously measure several hundred thousand sites throughout the genome, and when used in high-throughput to measure thousands of samples, generate terabytes of data per experiment. Again the massive amounts and new types of data generate new opportunities for bioinformaticians. The data is often found to contain considerable variability, or noise, and thus Hidden Markov model and change-point analysis methods are being developed to infer real copy number changes.

Another type of data that requires novel informatics development is the analysis of lesions found to be recurrent among many tumors .

No comments:

Post a Comment